\square

\square

AD-A186 292

CODEN: LUNFD6 (NFMS-3096)/1-18/(1986)

Department of Mathematical Statistics Box 118
S-221 00 Lund, Sweden

AFOSR.TK. ४7-1251

Recursive M-estimators of location and scale for dependent sequences by
Jan-Eric Englund, Ulla Holst and David Ruppert*

1986-9

November 1986

*The University of North Carolina
at Chapel Hill

1. INIRODUCTION.

P. Huber introduced the simultaneous M-estimates of location and scale, n and σ, based on observations $y_{1}, \ldots \ldots, y_{n}$, as a solution $\left(I_{n}, S_{n}\right)$ of

$$
\left\{\begin{array}{l}
\sum_{i=1}^{n} v\left(S_{n}^{-1}\left(y_{i}-T_{n}\right)\right)=0 \tag{1.1}\\
\sum_{i=1}^{n} x\left(S_{n}^{-1}\left(g_{1}-T_{n}\right)\right)=0,
\end{array}\right.
$$

where ψ and X are suitably chosen functions. In most cases ψ is an odd and X an even function. In particular he studied M-estimators generated by functions and X of the form (Buber's Proposal 2)
(1.2) $\left\{\begin{array}{l}\phi(x)=\operatorname{sig}(x) \min (|x|, k), \\ X(x)=\min \left(k^{2}, x^{2}\right)-\beta_{k},\end{array}\right.$
with B_{k} chosen to make $E(X(z))=0$ if the diatribution of z is $N(0,1)$. We refer to the booke by Euber (1981) or Bampel et al (1986) for a review of the properties of the K-estimators. There it is proved that, if the observations are 1.1.d. with a symatric distribution, ψ is odd and X an even function, it follows that

$$
\left\{\begin{array}{l}
n^{1 / 2}\left(T_{n}-n\right) \in \operatorname{AsN}\left(0_{i} \sigma^{2} E\left(\phi^{2}\left(z_{1}\right)\right) /\left(E\left(\phi^{\prime}\left(z_{1}\right)\right)\right)^{2}\right), \tag{1.3}\\
a^{\frac{1}{2}}\left(S_{a}-\sigma\right) \in \operatorname{ARN}\left(0, \sigma^{2} E\left(x^{2}\left(z_{1}\right)\right) /\left(E\left(z_{1} x^{\prime}\left(z_{1}\right)\right)\right)^{2}\right),
\end{array}\right.
$$

where $2_{1}=\sigma^{-1}\left(y_{1}-7\right)$. In this case T_{n} and S_{a} are asymprotically independent.

In real time situations, where the estimete is updated when new observations are obtained, it is often preferable to use a recursive estimeor. Martin and Maseliez (1975) pointed out the possibility of constructing recuraive M-estimetors using a stochastic approximation approach. The classical results for stochastic approximation algorithms
can be applied rather straightforwardly to investigate the asymptotic properties of recursive M-estimstors when the observations are independeat.

The behaviour of recursive M-estimators in dependent aituations are less kown. The pure location parameter case with modependent and strongly regular observationa is studied in Holst (1980) and Holst (1984) respectively. For practical use some recursive estimator of scale must be constructed and coupled to the estimetor of the location parameter. Recursive scale-estinators which are variants of the median absolute deviation are studied in Eolst (1985).

A broader approach to the eatimating probles is to construct recursive algorithns based on (1.1). In this paper we prove strong corvergence of entimetors of the form
and manly we discuss the following choice of $H_{n}^{(1)}$ and $H_{n}^{(2)}$:

With the notation \tilde{v} we man ∇ truncated above and below.
We consider the case when the observetions $\left\{\bar{y}_{1}\right\}_{1}$ can be described by a strictiy atationary process satiofying certain atrong aixing conditions. For the analysis we assume that \downarrow and X satisfy some regularity conditions. These are introduced in Section 2.

Strons convergence of n_{n} and σ_{n} and also of the adaptive sequences $G_{n}^{(1)}$ and $H_{n}^{(2)}$ is proved in Section 3.

In Englund, Holst and Ruppert (1987) we prove a strong representation theorem for the estimators. It is possible to derive asyptotic distributions using this theorem together with suitable forms of the Central Linit Theoren. When the observations are a sequence of 1.1.d. variables it follows that $\left(\eta_{n}, \sigma_{n}\right)$ has the same asymptotic diatribution se the nonrecursive eatimetor $\left(T_{n}, S_{n}\right)$. Coments on the asyeptoric distribation is given in Section 4. Further we disciss whether our choice of $H_{n}^{(1)}$ and $H_{n}^{(2)}$ is optinal or if it is possible to find a better one. We consider a gain aterix which aight be preferred, but this macrix containe unkown parameters which like a and b must be estianted, and this laad to an expansion of the dimension of the parameter.

In Section 5 we illuatrate the behaviour of the estinates for Buber's Proposel 2 when the observatione are 1.1.d. with a coneamated noras distribution.
2. HOTATIONS AND ASSURPTIONS.

To incorporate the adaptive sequences $G_{n}^{(1)}$ and $G_{a}^{(2)}$ we rewrite the algorith in the following way

$$
\left\{\begin{array}{l}
\theta_{n+1}=\theta_{n}+(n+1)^{-1} H_{n} h\left(\theta_{n}, y_{n+1}\right), \tag{2.1}\\
\theta_{0}, B_{0} \text { arbitrary and finite, }
\end{array}\right.
$$

where

$$
\theta_{n}=\left(\eta_{n}, \sigma_{n}, a_{n}, b_{n}\right)^{T}
$$

Further

$$
h\left(\theta_{n}, y_{n+1}\right)=\left(\begin{array}{l}
\tilde{\sigma}_{n} \phi\left(u_{n+1}\right) \\
\tilde{\sigma}_{n} x\left(u_{n+1}\right) \\
\psi^{\prime}\left(u_{n+1}\right)-a_{n} \\
u_{n+1} x^{\prime}\left(u_{n+1}\right)-b_{n}
\end{array}\right)
$$

with

$$
u_{a}=\tilde{\sigma}_{a-1}^{-1}\left(y_{a}-n_{a-1}\right)
$$

and
(2.2) $\quad H_{a}=\operatorname{diag}\left(a_{a}^{-1}, \hat{b}_{n}^{-1}, 1,1\right)$

With the notation $\tilde{\sigma}_{n}$ we man σ_{n} truncated above by a large positive number v_{2} and below by a small positive number v_{1} so thet
(2.3) $\quad \ddot{\sigma}_{a}=\left\{\begin{array}{llll}v_{1} & \text { if } & & \tilde{\sigma}_{a}<v_{1}, \\ \sigma_{n} & \text { if } & v_{1} \leq \tilde{\sigma}_{n} \leq v_{2}, \\ v_{2} & \text { if } & \tilde{\sigma}_{n}>v_{2},\end{array}\right.$

Throughout the paper it is understood that $v_{1} \leq \sigma \leq v_{2}$. The above notation will also be used for \tilde{a}_{n} and \tilde{b}_{n}. Note that

$$
a_{a}=n^{-1} \sum_{j=1}^{n} \phi^{\prime}\left(u_{j}\right)
$$

and

$$
b_{n}=a^{-1} \sum_{j=1}^{n} u_{f} x^{\prime}\left(u_{f}\right)
$$

so that with H_{n} defined as in (2.2) we get algorithn (1.4) with $H_{n}^{(1)}$ and $X_{a}^{(2)}$ given by (1.5).

Define

$$
\vec{h}(x)=E\left(h\left(x, y_{1}\right)\right)
$$

and let θ be the aolution of $\overline{\mathrm{a}}(\theta)=0$, where $\theta=(n, \sigma, a, b)^{T}$, that is with $z_{1}=\sigma^{-1}\left(y_{1}-n\right)$

$$
\left\{\begin{array}{l}
E\left(\psi\left(z_{l}\right)\right)=0, \tag{2.4}\\
E\left(X\left(z_{l}\right)\right)=0, \\
E\left(\phi^{\prime}\left(z_{l}\right)\right)=a, \\
E\left(z_{l} x^{\prime}\left(z_{l}\right)\right)=b .
\end{array}\right.
$$

Let $F_{1}^{m}=F\left(y_{1}, \ldots \ldots, y_{m}\right)$ be the σ-algebra generated by the random variablea y_{1}, \ldots, y_{m}. The sequence of strong mixing coefficients a_{i} is defined

$$
\alpha_{1}=\sup _{m} a\left(F_{1}^{m-1}, F_{m}^{\infty}\right)=\sup _{m} \sup _{F \in F_{1}^{m-1}, G \in F_{m}^{\infty}}|P(F G)-P(F) P(G)| .
$$

Further, we need the following notations $n(k)=\left[k^{\delta}\right]$ for some $\delta>2$ and

$$
o_{k}=\sum_{1-n(k)}^{n(k+1)-1}(1+1)^{-1}=O\left(k^{-1}\right)
$$

The constant C is positive and may change from line to line. For shortnese we usually write z instead of z_{1} below.

Finally we list the following asamptions for later use. A1. The sequence of observetions $\left\{y_{1}\right\}_{1}^{\infty}$ is strictly scationary and strong mixing with $\sum_{i=1}^{\infty} \alpha_{1}^{1-\varepsilon}<$ for some $0<\varepsilon<1$. The marginal diatribution is symentric, continuous and positive in a neighbourhood of n.

A2. The function $h(x, y)$ is bounded and Lipschitz-coneinuous both as a function of x and y i.e.

$$
\begin{aligned}
& \left\|h\left(x_{1}, y\right)-h\left(x_{2}, y\right)\right\| \leq R_{1}\left\|x_{1}-x_{2}\right\| \\
& \left\|h\left(x, y_{1}\right)-h\left(x, y_{2}\right)\right\| \leq R_{2}\left\|y_{1}-y_{2}\right\|
\end{aligned}
$$

for some positive constants K_{1} and K_{2}.
A3. The function $\psi(\cdot)$ is bounded, increasing (strictly increasing in a neighbourhood of zero) and odd. The function $x(\cdot)$ is bounded, increasing on ($0, \infty$) (strictly increasing in a neighbourhood of zero) and even.
44. The function $\overline{\mathrm{h}}(\cdot)$ satisfies $\overline{\mathrm{h}}(\theta)=0$.

AS. The following funcrions exist and are bounded:
$\psi^{(k)}(x)$ for $1 \leq k \leq 3, x_{\psi^{(k)}}^{(x)}$ for $1 \leq k \leq 2, x^{2}{ }^{(3)}(x)$, $x^{(k)}(x)$ for $1 \leq k \leq 2$ and $x^{k} x^{(k)}(x)$ for $1 \leq k \leq 3$.

Note that $A 2$ holds if the functions $x \psi^{\prime}(x), x \psi^{\prime \prime}(x), x x^{\prime}(x)$ and $x^{2} X^{\prime \prime \prime}(x)$ exist and are bounded and that $A S$ is a serong assumption which is used in Section 4 only.
3. AIMOST SURE CONVERGENCE.

In this section we study almost sure convergence of the algorithm (2.1). It is proved in Theoram 3.1 that $\theta_{n} \rightarrow \theta$ a.s., where θ solves $\bar{h}(\theta)=0$. The proof consists of two parts. Following Ruppert (1983) we show that

$$
\begin{equation*}
\theta_{n(k+1)}=\theta_{n(k)}+\sum_{1-n(k)}^{n(k+1)-1}(1+1)^{-1} E_{i} \bar{h}\left(\theta_{n(k)}\right)+o\left(k^{-1}\right) \tag{3.1}
\end{equation*}
$$

This ia accouplished by writing

$$
\begin{align*}
& \theta_{n(k+1)}=\theta_{n(k)}+\sum_{1-n(k)}^{n(k+1)-1}(i+1)^{-1} H_{i} \bar{h}\left(\theta_{n(k)}\right)+ \tag{3.2}\\
& +\sum_{1=0(k)}^{n(k+1)-1}(1+1)^{-1} n_{n(k)}\left(h\left(\theta_{n(k)}, \theta_{1+1}\right)-\bar{h}\left(\theta_{n(k)}\right)\right)+ \\
& +\sum_{i=n(k)}^{n(k+1)-1}(1+1)^{-1}\left(H_{i}-H_{n(k)}\right)\left(h\left(\theta_{n(k)} \cdot y_{i+1}\right)-\bar{h}\left(\theta_{n(k)}\right)\right)+ \\
& +\sum_{i-n(k)}^{n(k+1)-1}(1+1)^{-1} \mathrm{E}_{1}\left(h\left(\theta_{1}, y_{i+1}\right)-h\left(\theta_{n(k)}{ }^{y} y_{1+1}\right)\right) \\
& =\theta_{n(k)}+\sum_{i=n(k)}^{n(k+1)-1}(i+1)^{-1} B_{i} \bar{h}\left(\theta_{n(k)}\right)+ \\
& +R_{k, n(k+1)-1}+S_{k, n(k+1)-1}+T_{k, n(k+1)-1},
\end{align*}
$$

say, and then we prove that $R_{k, n(k+1)-1}, S_{k, n(k+1)-1}$ and $T_{k, n(k+1)-1}$ all are $o\left(k^{-1}\right)$. The mat involved expression, $R_{k, n}(k+1)-1$, is handled in Leman 3.3, which is a lemat by Ruppert (1983, Lequa 3.2). The second part of the proof is to show that (3.1) is sufficient to establish
convergence. This is verified using Lemm 3.4 , which is proved by a technique similar to the one used by Blum (1954).

In Leman 3.1 we prove that $\left\{g\left(y_{i}\right)\right\}_{1}^{\infty}$ is a mixingale with parameters ψ_{m} of size \mathcal{L}_{2} and c_{n} a constant if $\mathrm{g}(\cdot)$ is a bounded function with $E\left(g\left(y_{l}\right)\right)=0$. For a definition of mixingales and notations, see McLeish (1975). Also the result in Lema 3.2 is a aixingale inequality by Mcleish (1975, Theoren 1.6).

LEMMA 3.1 Let $g(\cdot)$ be bounded Borel-masurable function with $E\left(g\left(y_{1}\right)\right)=0$. If Al holds then $\left\{g\left(y_{1}\right)\right\}_{1}^{\infty}$ is a mixingale with parameters ψ_{m} of size h_{2} and c_{n} constant.

Proof Let $F_{m}^{a}-F\left\{Y_{m}, \ldots, Y_{n}\right\}$. Laman 2.1 by McLaish (1975) with $p=2$ and $r=$ gives

$$
\begin{aligned}
\left\|E\left(g\left(Y_{n}\right) \mid F_{-\infty}^{n-n}\right)-E\left(g\left(Y_{n}\right)\right)\right\|_{2} & =\left\|E\left(g\left(Y_{n}\right) \mid F_{-\infty}^{n-m}\right)\right\|_{2} \\
& \leq 2\left(2^{\frac{1}{2}}+1\right) \sqrt{a\left(F_{-\infty}^{n-E}, F_{n}^{\infty}\right)}\left\|g\left(Y_{n}\right)\right\|_{\infty} \\
& \leq C a^{\frac{1}{2}}
\end{aligned}
$$

that is $\phi_{n}=a_{i}^{\frac{1}{2}}$ and $c_{n}=C$. The fact that $\sum_{i=1}^{\infty} \alpha_{i}^{1-\varepsilon}<\omega$ for some $0<c<1$ implies that ψ_{m} is of aize $\frac{1}{2}$ according to Mcleish (1975, P. 831). This proves the lewne.

Lamp 3.2 Let $\left\{g\left(y_{1}\right)\right\}_{1}^{\infty}$ be defined as in Leman 3.1. Then there exists a constant c such that

$$
\left.\underset{n \leq n}{\max }\left|\sum_{i=1}^{n} d_{1} g\left(y_{1}\right)\right|^{2}\right) \leq c \sum_{i=1}^{n} d_{1}^{2}
$$

for all and constants $d_{1}, \ldots, d_{\text {. }}$.

Proof It is obvious from Lama 3.1 that $\left\{d_{1} g\left(y_{1}\right)\right\}_{1}^{\omega}$ is a mixingale Whth parameters ϕ_{m} of size h_{2} and $c_{a}=d_{a} C$. Theorem 1.6 by Mcleish (1975) proves the leman.

LEMEA 3.3 If Al-A2 hold then

$$
\sup _{x \in R^{4}} \max _{n(k) \leq \ell<n(k+1)} p_{k}^{-1}\left\|\sum_{1=n(k)}^{\ell} 1^{-1}\left(h\left(x, y_{1+1}\right)-\bar{h}(x)\right)\right\| \rightarrow 0
$$

whan $k \rightarrow \infty$.

Proof According to Ruppert (1983, Lama 3.2), we have to verify his assupptions A3-A6. A3 is obvious, A4 is exactly Lemma 3.2
above if $r=$ and $A S$ is satisfied since $h(x, y)$ is bounded.
Finally 46 follows from the Lipschitz continuity of $h(x, y)$ as a function of 7 . This proves Letuma 3.3.

LRMM 3.4 Let $t(\cdot)$ be a bounded function from R^{n} to R, $x^{(j)}$ an element of R^{1} and $\left\{x_{k}\right\}$ a sequence of $r . v$. satiafying the foilowing assumptiona:
B1. $x_{k+1}^{(j)}-x_{k}^{(1)}=D_{k} t\left(x_{k}\right)+O\left(k^{-1}\right)$ a.s. for some positive sequence $\left\{D_{k}\right\}_{1}^{\infty}$ satisfying $K_{1} k^{-1} \leqslant D_{k} \leqslant R_{2} k^{-1}$ where K_{1} and K_{2} are positive constants.

B2. For all $Y>0$ there are $\delta_{1}, \delta_{2}>0$ and N_{γ} astisfying $\sup \varepsilon\left(x_{k}\right)=-\delta_{1}$, where the supremis is for $\left\{x_{k}: x_{k}^{(j)}>x^{(j)}+\gamma\right\}$, and inf $t\left(x_{k}\right)=\delta_{2}$, where the infigus is for $\left\{x_{k}: x_{k}^{(f)}<x^{(f)}-y\right\}$, for all $k \geq N_{\gamma}$.

$$
\text { Then } x_{k}^{(g)} \rightarrow x^{(j)} \text { a.s. }
$$

Proof Aesum that $x_{k}^{(j)} \rightarrow \infty$. The assumptions make it possible to find a coastant N_{1} auch that $D_{k} t\left(x_{k}\right)+O\left(k^{-1}\right)<0$ for $k>N_{1}$, and thus $x_{k+1}^{(j)}<x_{k}^{(j)}$ and heace we get a contradiction. (The case $x_{k}^{(j)} \rightarrow \infty$ is trested in the asme way.) Now assume that $x_{k}^{(j)}$ doesn't converge, that 1a $\operatorname{lininf} x_{k}^{(j)}<\operatorname{linsup} x_{k}^{(j)}$, and also assuma that $\limsup x_{k}^{(j)}>x^{(j)}$. (The case lingup $x_{k}^{(j)} \leq x^{(j)}$ is handled by a similar argument.) Define Y fron the relacion 1 insup $x_{k}^{(j)}=x^{(j)}+3 Y$. Take N_{2} so large that $-D_{k} \delta_{1}+o\left(k^{-1}\right)<0$ for $k>N_{2}$. Then we can find $N_{2} \leq n$, $m>n+1$
such that $x^{(j)}<x_{n}^{(j)}<x^{(j)}+\gamma, x^{(j)}+Y \leq x_{k}^{(j)} \leq x^{(j)}+2 \gamma$ for $k=a+1, \ldots, m-1$ and $x_{m}^{(j)}>x^{(j)}+2 \gamma$. This is possible since $x_{k+1}^{(j)}-x_{k}^{(j)} \rightarrow 0$. Now

$$
x_{m}^{(j)}-x_{n}^{(j)}=\sum_{k=n}^{m-1}\left(D_{k} t\left(x_{k}\right)+o\left(k^{-1}\right)\right)<D_{n} t\left(x_{n}\right)+o\left(n^{-1}\right)
$$

and this quantity can be made arbitrarily small, which is a contradiction.

Theorem 3.1 will now be stated.

THEOREM 3.1 Let θ_{n} be generated by algorithm (2.1). If Al-A4 hold, then $\theta_{n} \rightarrow \theta$ a.s. as $n \rightarrow \infty$.

Proof The first part is to prove that

$$
\begin{equation*}
\theta_{n(k+1)}=\theta_{n(k)}+\sum_{i-n(k)}^{n(k+1)-1}(i+1)^{-1} H_{i} \bar{h}\left(\theta_{n(k)}\right)+o\left(k^{-1}\right) . \tag{3.3}
\end{equation*}
$$

For $n(k) \leq \ell<n(k+1)$ we have

$$
\begin{aligned}
& \theta_{\ell+1}=\theta_{\ell}+(\ell+1)^{-1} H_{\ell} h\left(\theta_{\ell},{ }_{\ell}{ }_{\ell+1}\right) \\
& -\theta_{n(k)}+\sum_{i-n(k)}^{\ell}(i+1)^{-1} G_{i} h\left(\theta_{1}, y_{i+1}\right) \\
& =\theta_{n(k)}+\sum_{1=n(k)}^{\ell}(1+1)^{-1} H_{1} \bar{h}\left(\theta_{n(k)}\right)+ \\
& +\sum_{i=0(k)}^{\ell}(1+1)^{-1} \underline{B}_{n(k)}\left(h\left(\theta_{n(k)} \cdot y_{i+1}\right)-\bar{h}\left(\theta_{n(k)}\right)\right)+ \\
& +\sum_{1-n(k)}^{\ell}(1+1)^{-1}\left(H_{i}-H_{n(k)}\right)\left(h\left(\theta_{n(k)}, y_{i+1}\right)-\bar{h}\left(\theta_{n(k)}\right)\right)+ \\
& +\sum_{1=n(k)}^{\ell}(1+1)^{-1} H_{1}\left(h\left(\theta_{i}, y_{i+1}\right)-h\left(\theta_{n(k)}, y_{i+1}\right)\right) \\
& -\theta_{n(k)}+\sum_{1-0(k)}^{\ell}(1+1)^{-1} H_{1} \bar{h}\left(\theta_{n(k)}\right)+R_{k, \ell}+S_{k, \ell}+T_{k, \ell} .
\end{aligned}
$$

The fact that $\|_{k, l} R_{i}=O\left(k^{-1}\right)$ follows from Lemma 3.3 and due to the boundedness of $h(x, y)$ we also have $\left\|S_{k, l}\right\|=O\left(k^{-1}\right)$ if we can prove
that

$$
\sup _{\mathrm{n}(\mathrm{k})<1<\mathrm{n}(k+1)} \|_{\mathrm{H}_{1}-\mathrm{H}_{\mathrm{a}(k)} \|=O(1) .} .
$$

This follow easily for our choice of H_{i}. The tern $r_{k, l}$ is treated by writing

$$
\begin{aligned}
& \left\|r_{k, L}\right\|=\left\|_{1=n(k)}^{\ell}(1+1)^{-1} H_{1}\left(h\left(\theta_{1}, 耳_{1+1}\right)-h\left(\theta_{n(k)} \cdot y_{1+1}\right)\right)\right\| \\
& \leq C_{i=n(k)}^{\ell}(1+1)^{-1}\left\|h\left(\theta_{i}, y_{i+1}\right)-h\left(\theta_{n(k)}, y_{i+1}\right)\right\| \\
& \leq \sum_{i=n(k)}^{\ell}(i+1)^{-1}\left\|\theta_{i}-\theta_{n(k)}\right\| \\
& \leq \operatorname{Co}_{k} \max _{n(k) \leq 1<n(k+1)}\left\|\theta_{1}-\theta_{n(k)}\right\|
\end{aligned}
$$

since $h(x, y)$ is Lipachitz continous in x. Now we have proved that

$$
\left\|\theta_{i+1}^{-\theta_{n(k)}}\right\| \leq C_{1} \rho_{k}+o\left(\rho_{k}\right)+C_{2} \rho_{k} \max _{n(k) \leq i<n(k+1)}\left\|\theta_{1}-\theta_{n}(k)\right\| .
$$

The inequality

$$
\begin{equation*}
\max _{n(k) \leq i<n(k+1)}^{\| \theta_{i}^{-\theta} n(k)} \| \leq\left(C_{1} \rho_{k}+0\left(\rho_{k}\right)\right) /\left(1-C_{2} \rho_{k}\right) \tag{3.4}
\end{equation*}
$$

for large k gives $\left\|I_{k, \ell}\right\|=O\left(k^{-1}\right)$. Sumarizing we have verified (3.3).
The second part of the proof is to show that this gives the result
stated in the theorem. We apply Leman 3.4 to the components of the vector $\overline{\mathrm{h}}\left(\theta_{\mathrm{n}(\mathrm{k})}\right)$. It is obvious that B 1 holds and it ramans to verify $B 2$ for all components. We start at $\bar{h}^{(1)}\left(\theta_{g(k)}\right)$ and take the components in order. The convergence of $\eta_{n(k)}$ follows because $\bar{h}^{(1)}\left(\theta_{n(k)}\right)$ sactsfies $B 2$ since $\psi(\cdot)$ is increasing and odd. For $\sigma_{n(k)}$ we have

$$
\bar{h}^{(2)}\left(\theta_{n(k)}\right)=\bar{h}^{(2)}\left(\theta_{n(k)}\right)-\bar{h}^{(2)}\left(k_{n(k)}\right)+\bar{h}^{(2)}\left(k_{n(k)}\right),
$$

where

$$
r_{n(k)}=\left(n, \sigma_{n(k)}, a_{n(k)}, b_{n(k)}\right)^{T}
$$

Assumptions $A 1$ and $A 4$ implies that $\bar{h}^{(2)}\left(k_{n(k)}\right)=-\delta$ if $\sigma_{n(k)}>\sigma+\gamma$ because $x(\cdot)$ is increasing on $(0, \infty)$ and even and the first part of the assumption is satisfied from the fact that

$$
\left\|\bar{h}^{(2)}\left(\theta_{n(k)}\right)-\bar{h}^{(2)}\left(k_{n(k)}\right)\right\| \leq c\left\|\eta_{n(k)}-\eta\right\| \leq \delta / 2
$$

if k is large enough. This is due to the proved part above and the Ifpschtez-continuity of $\bar{h}(x)$ as a function of x. The second part of the assumption follows in the same way. The convergence of $a_{a}(k)$ follows because

$$
\begin{aligned}
\bar{h}^{(3)}\left(\theta_{n(k)}\right) & =\bar{h}^{(3)}\left(\theta_{n(k)}\right)-\bar{h}^{(3)}\left(\lambda_{n(k)}\right)+\bar{h}^{(3)}\left(\lambda_{n(k)}\right) \\
& =\bar{h}^{(3)}\left(\theta_{n(k)}\right)-\bar{h}^{(3)}\left(\lambda_{n(k)}\right)+a-a_{n(k)}
\end{aligned}
$$

where

$$
\lambda_{n(k)}=\left(n, \sigma, a_{n(k)}, b_{n(k)}\right)^{T}
$$

The Lipschitz-continuity makes it possible co choose N such that

$$
\left\|\bar{h}^{(3)}\left(\theta_{n(k)}\right)-\bar{h}^{(3)}\left(\lambda_{n(k)}\right)\right\| \leq C\left(\left\|n_{n}-n_{a(k)}\right\|+\left\|\sigma-\sigma_{n(k)}\right\|\right)<\delta / 2
$$

for all $k>N$, and this proves that $a_{n(k)}+a$. A similar argument shows that $b_{n(k)} \rightarrow b$.
 proves the remaining part of the theorem.
4. COMABNTS ON THE ASMPTOTIC DISTRIBUTION AND ON THE CROICE OF THE ADAPTIVE MATRIX.

In Section 3 we proved strong consistency of the algorithm (2.1). In order to discuss our choice of H_{n} we also need results for the asymptotic distribution of the algorithm.

The asymptotic distribution can be derived from a strong represen-
tation theorem which is proved in Englund, Holat and Ruppert (1987). The same theorem is stated here without proof to facilitate the discussion below. (By the notation \tilde{x} in this section we mean a continuous and differentiable version of (2.3).)

THEOREM 4.1 If Al, A3-A5 hold and θ_{n} is given by the algorithm (2.1), then there exists $\varepsilon>0$ such that

$$
n^{\frac{1}{2}}\left(\theta_{n}-\theta\right)=n^{-\frac{1}{2}}\left(\begin{array}{l}
\sum_{k=1}^{n} a^{-1} \sigma \neq\left(z_{k}\right) \\
\sum_{k=1}^{n} b^{-1} \sigma x\left(z_{k}\right) \\
d_{1} \sum_{k=1}^{n} \log \left(\frac{k}{n}\right) x\left(z_{k}\right)+\sum_{k=1}^{n}\left(\phi^{\prime}\left(z_{k}\right)-a\right) \\
d_{2_{k=1}}^{n} \log \left(\frac{k}{n}\right) x\left(z_{k}\right)+\sum_{k=1}^{n}\left(z_{k} x^{\prime}\left(z_{k}\right)-b\right)
\end{array}\right)+O\left(n^{-\varepsilon}\right),
$$

where $z_{k}=\sigma^{-1}\left(y_{k}-n\right), \quad d_{1}=b^{-1} E\left(z_{1} \phi^{\prime \prime \prime}\left(z_{1}\right)\right)$ and $d_{2}=1+b^{-1} E\left(z_{1}^{2} x^{\prime \prime}\left(z_{1}\right)\right)$.

For a sequence of independent observations the theorem gives

$$
n^{\frac{1}{2}}\left(\theta_{n}-\theta\right) \in \text { As } N(0, \nabla) .
$$

where

$$
\nabla=\left(\begin{array}{cccc}
\nabla_{11} & 0 & 0 & 0 \\
& \nabla_{22} & v_{23} & v_{24} \\
& & \nabla_{33} & v_{34} \\
& & & \nabla_{44}
\end{array}\right)
$$

with variance elements

$$
\begin{aligned}
& \nabla_{11}=a^{-2 \sigma^{2} E_{\chi}^{2}(z)} \\
& \nabla_{22}=b^{-2} \sigma^{2} E_{X}^{2}(z), \\
& v_{33}=v\left(\psi^{\prime}(z)\right)+2 d_{1}^{2} v(X(z))-2 d_{1} C\left(x(z), \psi^{\prime}(z)\right),
\end{aligned}
$$

$$
\nabla_{44}=\nabla\left(z X^{\prime}(z)\right)+2 d_{2}^{2} \nabla(X(z))-2 d_{2} C\left(X(z), z X^{\prime}(z)\right),
$$

and covariance elements

$$
\begin{aligned}
\nabla_{23}= & -d_{1} b^{-1} \sigma V(x(z))+b^{-1} \sigma C\left(x(z), \psi^{\prime}(z)\right), \\
\nabla_{24}= & -d_{2} b^{-1} \sigma \nabla(x(z))+b^{-1} \sigma C\left(x(z), z x^{\prime}(z)\right), \\
\nabla_{34}= & 2 d_{1} d_{2} \nabla(x(z))-d_{1} C\left(x(z), z x^{\prime}(z)\right)-d_{2} C\left(x(z), \psi^{\prime}(z)\right)+ \\
& +C\left(z x^{\prime}(z), \psi^{\prime}(z)\right) .
\end{aligned}
$$

In the ramaining part of this section we discuss whether B_{n} in Section 3 is optimal or if we can find a better one.

Given a recursive algorithm it is wall known that the "optimal" adaptive matrix $H^{\text {opt }}$ is the negative inverse of the derivates of $\overline{\mathrm{h}}(\theta)$. Here we get

$$
\left.\begin{array}{ccc}
E\left(z \phi^{\prime}(z)-\psi(z)\right) & 0 & 0 \\
E\left(z X^{\prime}(z)-X(z)\right) & 0 & 0 \\
E\left(\sigma^{-1} z \phi^{\prime \prime}(z)\right) & 1 & 0 \\
E\left(\sigma^{-1}\left(z X^{\prime}(z)+z^{2} X^{\prime \prime}(z)\right)\right) & 0 & 1
\end{array}\right)
$$

If ψ is odd and X even this reduces co
(4.1) $\quad \mathrm{H}^{\text {Opt }}=\left(\begin{array}{cccc}a^{-1} & 0 & 0 & 0 \\ 0 & b^{-1} & 0 & 0 \\ 0 & -(b \sigma)^{-1} E\left(z \phi^{\prime \prime}(z)\right) & 1 & 0 \\ 0 & -\sigma^{-1}\left(1+b^{-1} E\left(z^{2} x^{\prime \prime}(z)\right)\right) & 0 & 1\end{array}\right)$,
where as above $a=E\left(\psi^{\prime}(2)\right)$ and $b=E\left(z X^{\prime}(z)\right)$. The values of a, b, $E\left(z \psi^{\prime \prime}(z)\right)$ and $E\left(z^{2} X^{\prime \prime}(z)\right)$ are in general unknown and if we try to estimace $E\left(z \psi^{\prime \prime}(z)\right)$ and $E\left(z^{2} x^{\prime \prime}(z)\right)$ we get more elaments in the parameter vector.

It is however worth noting that this more complicated algorithm may reduce the asymptocic variances of a_{n} and b_{n}. If we assume that we
lonow the values of $d_{1}=b^{-1} E\left(z \psi^{\prime \prime}(z)\right)$ and $d_{2}=1+b^{-1} E\left(z^{2} x^{\prime \prime}(z)\right)$ and insert them and the truncaced astiantes of a and b in thematrix gopt we get che algorithm

$$
\begin{align*}
& \left(n_{a+1}^{\prime}-n_{a}^{\prime}+(n+1)-1 \tilde{\sigma}_{a}^{\prime} \psi\left(u_{a+1}^{\prime}\right) / \tilde{a}_{n}^{\prime},\right. \\
& \sigma_{n+1}^{\prime}=\sigma_{n}^{\prime}+(a+1)^{-1}{\underset{n}{n}}_{\prime}^{n_{n}} \times\left(u_{a+1}^{\prime}\right) / \hat{\sigma}_{n}^{\prime}, \\
& a_{a+1}^{\prime}=a_{a}^{\prime}+(a+1)^{-1}\left(b^{\prime}\left(u_{a+1}^{\prime}\right)-d_{1} x\left(u_{a+1}^{\prime}\right)-a_{a}^{\prime}\right) \text {, } \tag{4.2}\\
& b_{n+1}^{\prime}=b_{n}^{\prime}+(n+1)^{-1}\left(u_{n+1}^{\prime} x^{\prime}\left(u_{n+1}^{\prime}\right)-d_{2} x\left(u_{n+1}^{\prime}\right)-b_{n}^{\prime}\right) \text {, }
\end{align*}
$$

where $u_{a+1}^{\prime}=\left(y_{a+1}-n_{a}^{\prime}\right) / \sigma_{a}^{\prime}$. It is easy to prove that this algorithm satisfies $\theta_{n}^{\prime} \rightarrow \theta$ a.s. and frou the technique used in Englund, Holst and Rluppert (1987) it also follows for independent observations that

$$
n^{\frac{1}{2}}\left(\theta_{n}^{\prime}-\theta\right) \in A s N\left(0, V^{\prime}\right),
$$

where

$$
\nabla^{\prime}=\left(\begin{array}{cccc}
\nabla_{11} & 0 & 0 & 0 \\
& \nabla_{22} & \nabla_{23} & \nabla_{24} \\
& & \nabla_{33}^{\prime} & \cdots \\
& & & \nabla_{44}^{\prime}
\end{array}\right)
$$

The only difference between ∇ and V^{\prime} is the elaments

$$
\begin{aligned}
\nabla_{33}^{\prime} & =\nabla\left(\phi^{\prime}(z)\right)+d_{1}^{2} \nabla(x(z))-2 d_{1} C\left(x(z), \psi^{\prime}(z)\right) \\
\nabla_{44}^{\prime} & =\nabla\left(z x^{\prime}(z)\right)+d_{2}^{2} \nabla(x(z))-2 d_{2} C\left(x(z), z x^{\prime}(z)\right) . \\
\nabla_{34}^{\prime} & =d_{1} d_{2} \nabla(x(z))-d_{1} C\left(x(z), z x^{\prime}(z)\right)-d_{2} C\left(x(z), \psi^{\prime}(z)\right)+ \\
& +C\left(z x^{\prime}(z), \phi^{\prime}(z)\right) .
\end{aligned}
$$

Note that the variances ∇_{33} and ∇_{44} for the algorithm in Section 2 both are larger than ∇_{33}^{\prime} and V_{44}^{\prime}.

As an example we cake Huber' Proposal 2 with $k=1.5$. Although the functions defined in (1.2) do not satiafy $A 2$ and $A S$ it is confectured in Englund, Holst and Ruppert (1987) that the theorem is
valid if d_{1} and d_{2} are interpreted as $d_{1}=-2 b^{-1} k f(k)$ and $d_{2}-2-46^{-1} k^{3} f(k)$, where f is the density of z. For this choice and independent $N(0,1)$ distributed randon variables we get

$$
\nabla=\left(\begin{array}{cccc}
1.0371 & 0 & 0 & 0 \\
& 0.6894 & 0.0621 & 0.2797 \\
& & 0.1641 & 0.2262 \\
& & & 1.2326
\end{array}\right)
$$

and

$$
\nabla^{\prime}=\left(\begin{array}{cccc}
1.0371 & 0 & 0 & 0 \\
& 0.6894 & 0.0621 & 0.2797 \\
& & 0.0600 & 0.2699 \\
& & & 1.2143
\end{array}\right)
$$

Observe that $b_{n}^{\prime}=2 k^{2} a_{n}^{\prime}-2\left(k^{2}-B_{k}\right)$ for Buber's Proposal 2, which inplies that $p\left(a_{n}^{\prime}, b_{n}^{\prime}\right)=1$ and hence the nuber of components of θ_{n}^{\prime} reduces to three.

It is our intention to study algorithe (4.2) with eatimates of d_{1} and d_{2} in the near future. For Huber's Proposal 2 we only have to estimate d_{1} and this makes use of ropt more feasible. $^{\circ}$

5. A NUMERICAL EXANPLE.

In this section we give a nuerical example of the adaptive eatimator defined in Section 2 when $\left\{y_{t}\right\}_{1}^{1000}$ is a sequence of independent r.v. with a contamaned normal distribution $0.9 N(0,1)+0.1 N(0,25)$. We will use Euber's Proposal 2, defined in (1.2). The constant k is chosen to 1.5 which makes $8_{1.5}-0.7784$. The variables σ_{n}, a_{n} and b_{n} are all truncated below by 0.1 and above by 10. To avoid that bad early estimates of $\tilde{\sigma}_{n}, \tilde{a}_{n}$ and \tilde{b}_{n} influence the results too much ve take $H_{n}=I$ and

$$
h\left(\theta_{n}, \xi_{n+1}\right)=\left(\begin{array}{l}
\psi\left(\tilde{\sigma}_{n}^{-1}\left(y_{n+1}-\eta_{n}\right)\right) \\
x\left(\tilde{\sigma}_{n}^{-1}\left(y_{n+1}-n_{n}\right)\right) \\
\psi\left(\hat{\sigma}_{n}^{-1}\left(y_{n+1}-n_{n}\right)\right)-a_{n} \\
\tilde{\sigma}_{n}^{-1}\left(y_{n+1}-n_{n}\right) x^{\prime}\left(\sigma_{n}^{2-1}\left(y_{n+1}-n_{n}\right)\right)-b_{n}
\end{array}\right)
$$

If $\mathrm{n} \leq 50$. The initial value is $\theta_{0}=(0,1,0,0)^{\mathrm{T}}$ and the solution of (2.4) is $(n, 0, a, b)^{T}=(0,1.1346,0.8468,0.8024)^{T}$.

The figures belov are produced to give an impression of the behaviour of the recursive estimates. The performance of $\eta_{n}, \sigma_{n}, a_{n}$ and b_{n} for $a=1, \ldots, 1000$ is shown in Pigures 5.1-5.4 respectively. Also the recursive least squares estimator of n, the sample man, is given in Figure 5.1 for comparison. The arrows in the figures indicate the convergence points.


```
F1. 5.1. 1: \(n_{0}\)
2: aample mean
```


Abstract

Finally ve mention that the asymptotic variance is 1.3977 for the recursive estimator, while the least squares estmator has the asymptotic variance 3.4000 .

6. REFERENCES.

Blum, J. (1954). Approximetion methods which couvaze with probability one. Amn. Mach. Scatist. 25, 382-386.

Englund, J-E., Bolst, D., and Buppert, D. (1987). A representation theoren for generalized Robbina-Monro processes and applications. Univ. of Lund, Stat. Research Report 1987:1.

Bampel et al. (1986). Robust atatistica, the approach based on influence functions. Hiley-Interscience.

Bolat. ©. (1980). Convergance of a recuraive stochastic algorithm with e-dependent obeervacions. Scand. J. Scatist. 7, 207-215.

Holst, ©. (1984). Conversence of a recursive robust algorithm with strongly regular observations. Stochastic Process. Appl. 16, 305-320.

Holat, U. (1985). Recursive M-estimeors of location. Manuscript subnited to Come. in Statistics.

Huber, P (1981). Robust statistics. W1ley-Interscience.
Martin, R.D. and Maraliaz, C.J. (1975). Robust estination via stochastic approximetion. IEEE Trans. Inform. Theory 21. 263-271.

McLeish, D.L. (1975). A maximal inequality and dependent strons lawz. Ann. of Prob. 3, 829-839.

Ruppert, D (1983). Corvergence of stochantic approximation algorithes vith non-additive dependent disturbancea and applicetions. Lecture Notes in Statiatica 20. Springer-Verlag.
$E N D$
Date Filmed
DEC.

$$
1987
$$

